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The diffusion of a long polymer chain in a random matrix is investigated using a discrete Ising-like
reptation model which has been modified to include a weak random chain-matrix interaction. While
reptation’s usual inverse-length dependence of the diffusion constant is not changed, the interaction
engenders a long-lived transient with a characteristic time proportional to the square of the chain length.

PACS number(s): 36.20.—r, 82.45.+2z, 87.15.—v

INTRODUCTION

Diffusion of polymers through random networks is fre-
quently described with the reptation model introduced by
de Gennes [1] and elaborated by Doi and Edwards [2]. A
fundamental tenet of the model is that the chain’s friction
coefficient along its random curvilinear path is propor-
tional to chain length. Accordingly reptation predicts
that the chain’s diffusion constant along the same curvi-
linear path must depend inversely on chain length and
after projection along an external direction, like that of
an applied external field, for example, the diffusion will
depend inversely on chain length squared [1,2]. The fre-
quently observed inverse-length dependence of the gel-
electrophoretic mobility of polyelectrolytes such as DNA
is consistent with these predictions [3,4], but significant
departures from this prediction have been observed
[5-8]. Also recent experiments [9-14] and computer
simulations with long polymer chains [15-17] show a
different dependence of diffusion on chain length and sup-
port the view that other modes of motion, more complex
than simple reptation, can contribute significantly to the
motion. Within the framework of simple reptation
theory, however, it has been suggested that some neglect-
ed interaction between chain and matrix could also alter
the diffusion’s length dependence, and long chains might
be localized or trapped by rare low-energy states [18]. In
this paper we investigate analytically the effect of a weak
random chain-matrix interaction on the diffusional
motion of a long chain. To do this we extend a discrete,
Ising-like, reptation model previously described [19].
The precise form of the interaction is not specified, but
weak elastic bending of the chain as it migrates or a van
der Waals-type interaction between chain and network
would be consistent with our formulation. Principally,
we find that, while the length dependence of the diffusion
constant predicted by reptation is not changed, the
chain-lattice interaction can give rise to a long-lived tran-
sient, decaying inversely with time, with a characteristic
time proportional to the square of the chain length. Re-
gardless of chain length, we find that trapping states only
exist in the limit of very large interactions.

In Sec. I we outline the discrete reptation model and
perform several simple illustrative calculations which set
the stage for our main calculation. In Sec. IT we formu-
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late the master equation which describes the time depen-
dence of the chain’s diffusive motion and obtain the time
dependence of the diffusion. In Sec. III our results are
summarized, discussed, and possible future extensions in-
dicated.

I. REPTATION MODEL AND PRELIMINARIES

In the discrete reptation model employed here the
chain is replaced by a sequence of + or — signs, which
roughly denote orientation with respect to some external
axis [16]. The total number of signs, always an even
number N, is taken to represent the length of the chain.
The projection of the chain along the external direction is
assumed proportional to the discrete random variable
x =n, —n_, where n is the number of positive signs
and n_, the number of negative signs in the sequence.
Since N is even, possible x values are all even values, from
—Nto N, and 0. For N =38, for example, a possible chain
sequence is (+++——+++)y, where H and T
denote arbitrarily but permanently labeled head and tail
ends of the chain. When the chain makes an H (7)) move
the sign at the T (H) end is dropped and another is added
at the H (T) end. More details can be found in Ref. [16].
For this calculation we extend the model and schematize
the chain with two superimposed sequences of + and —
signs, which we assume to be independent. (For the case
of elastic energy this last assumption might be modified,
but since we will only consider weak interactions in this
calculation we will omit that complication.) One se-
quence, the x sequence, represents the projection along
an external axis of the chain’s spatial configuration that
we have just discussed. (Since we only consider diffusion
in this calculation, we will not need the x sequence.) The
other sequence, which we will call the g sequence, is a
discrete, two-valued, rendering of the chain’s interaction
with the matrix. Negative signs are assigned to links
with no interaction (e.g., a relaxed link of the chain for
elastic energy), and the interactions energy is always —e
(in units of kT') and + signs are assigned to links whose
interaction is nonzero (e.g., a bent link) and they have en-
ergy €. In case the interaction is the chain’s elastic ener-
gy, the energy to bend a single link is therefore 2e. Like
x, we define a discrete random variable g=n, —n_,
where n, and n_ are sign counts in the g sequence. A
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possible N =8 g sequence is f(———+++++)g,
where H and T refer to head and tail ends of the chain,
just as for the x sequence. For each g sequence the total
chain-matrix interaction energy is ge. The energy of the
lowest state is —Neg, and as the chain moves Ag =0, or
+2.

Once again, an H (T) move drops the sign at the T (H)
end of the g sequence and adds a sign at the H (T) end.
In our model we assume that J is the probability of add-
ing either a + or — sign. In other words, when the ran-
dom lattice was constructed, at each position which a
chain link might occupy the sign of the chain-lattice in-
teraction was permanently fixed by the flip of a coin. The
distribution of possible chain energies in the matrix is
therefore binomial. Therefore, for a chain which can
move freely about the matrix, as will be the case in the
limit €—0, the equilibrium distribution of g values must
also be binomial, just as the distribution of x values is bi-
nomial in the absence of an external force field [19].

It is easy to calculate the equilibrium statistics of the
discrete random variable g. In thermal equilibrium the
probability of a given value of g =n —n _ is just given
by

p(g)=(2"Ncosh ™ Me)N1/(n_ In_e 8¢, )

where the first set of parentheses contains the normaliza-
tion. That is, using N=n_,+n_ and g=n, —n_,itis
easy to prove that I, N!/(n ln_!) e ¢° =2NcoshN5,
where N!/(n _!n_!) is just the degeneracy of each g state
and the sum is over all possible g values, that is,
g=—N,—N+2,...,—2,0,2,..., N—2,N. The mean
value is then

(g)=3 p(g)g=—N tanh(e) . )
g

Similarly we find that {g?)=N[(N —1)tanh?¢+1] and
the variance (g2)—{g)>=N(1— tanh?). These results
show that as € increases the equilibrium changes from a
binomial distribution of g values centered at g =0 to a
state in which the chain is trapped at a place where the
interaction energy is lowest and g = —N. The important
point though is that both the scaled mean (g ) /N and the
scaled variance ({g2?)—(g)?)/N depend only on & and
not, for example, on the product Ne. Further, only in the
limit €— oo is the chain trapped in its lowest-energy state
with the variance equal to zero. For diffusion this
behavior of the variance is especially revealing since the
variance measures how widely the chain samples the
whole set of g values. Also, since the scaled variance is
determined solely by the interaction energy €, we expect
the diffusion constant to show new dependence on € but
no modification of the size dependence required by repta-
tion. These expectations are borne out by explicit calcu-
lation in Sec. II.

To illustrate our general approach we now calculate
how the chain approaches the equilibrium state as each
forward (H move) or backward (7 move) move increases
the move number from i to i +1, with i =0 and g =g, in-
itially. To solve this problem we first write the re-
currence relation satisfied by the discrete probabilities

that the chain has configuration g after i moves. Denot-
ing these probabilities by P;(g), if initially P; _,(g)=¥8

880’
the recurrence relation to be solved is
P, (8)=W,(g)P;(g)+W,(g —2)P;(g —2)
+W_,(g +2)P;(g +2), (3)

where W(g) is the probability that the chain makes a
Ag =0 transition from configuration g during the i +1
move and the W, and W_, are defined analogously for
Ag ==2 transitions during the i +1 move. Equation (3)
is completely general, but the exact form of each W is
prescribed by the model adopted to describe the
polymer’s motion. Here we can obtain the W’s by con-
sidering diagrams like those in Fig. 1. Consider Fig.
1(a), for example. The chain is in state g after the ith
move and both H and T moves are Ag = +2 transitions.
The chain-matrix configuration after the ith move is
therefore +(— - -+ — )y =+, where the signs outside the
parentheses refer to the matrix position that the chain
moves into. The probability that the chain sequence is as
above is just n_ /N(n_—1)/N —1, while the probability
for the matrix is £ X1=1. Two additional probabilities
are needed: the probabilities Wy and W, that thermal
energy will cause a head (H) jump or a tail (T) jump, re-
spectively. In this case, since the energy changes are
equal for both jumps, Wy =W ;=1. So the contribution
of diagram 1 (a) to W,(g —2) is

Wyln_/N(n_—1)/N—1]L
+Wyln_/N(n_—1)/N—1]L
=[n_/N(n_—1)/N—1]%,

with n_/N=1[1—(g —2)/N]. In general, Wy*W,
and further, either the H or T move, but not both, con-
tributes to the probability W. Consider Fig. 1(c), for ex-

— g+2 — g+2 —_— g+2
H H H
g g g
T T T
—_— g+2 _— g —_— g-2
(a) (b) (©
— — g2
H H
g ¢]
T T
—_—g+2 _— g+2
(d) (e)

FIG. 1. Diagrams which show Ag =2 moves available to a
chain initially in configuration g. In (a), for example, both H
and T are Ag =2 moves. The remaining four diagrams occur in
pairs, with H and T outcomes exchanged. Corresponding to
each diagram is a chain-matrix configuration from which the
probability of a Ag =2 outcome can be calculated. The sum of
the probabilities is W,(g), the total probability that the chain
makes a Ag =2 move from configuration g.
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ample. Here the required chain-matrix configuration is
—r(— - +)y+, which occurs with probability
[n_/Nn, /(N—1)]4, and only the H move, with proba-
bility Wy=e /(e *+e*? contributes to the
Ag = +2 probability. The more favorable T move has
probability Wp=e "% /(e *+e12%), and of course,
Wy+Wpr=1. The diagram 1(c) contribution to W, is
therefore

e ®/(e > (e *+eT®)n_/N)ny /(N—1)]L .
Diagram 1(e) is the T jump version of 1(c) and its contri-
bution to the Ag = +2 probability is identical to that just
calculated. Similarly, diagrams 1(b) and 1(d) are paired
and both contribute e “2¢ /(e ~2*+1)(n_ /N)%. To calcu-
late this note that two chain-matrix configurations con-
tribute to this diagram: +4;(—:--+)y+ and
r(— -+ —)yg+. For each sequence a T jump is a
Ag=0 transition and the probabilities are
Hn_/Ni)[ny/(N—1)] and {(n_/N)n_—1)/(N—1)
respectively. The total probability of the Ag = +2 chan-
nel is thus

W,(g —2)=(n_/N)n_—1)/[4N —1)]
+e 2% /[2(e " %+1)])(n_/N)
+e E/[2(e E+e )]
X(n_/N)[n,/(N—1)], (4a)

with n_ /N=1[1—(g —2)/N]. The diagrams needed to
calculate the probabilities W_, and W, are given in Figs.
2 and 3. The results are

Wolg)=1++1/[2(1+e*)])(n 4 /N)
+1/[2(1+e " #)}(n_/N), (4b)
with n, /N=1(1+tg/N) and
W_,(g+2)=(n, /N)n,—1)/[4N—1)]
+e2/[2(1+e®)](n, /N)
+e2/[2(e*+e )]

X(n, /N)n_/(N—1], (4c)
— -2 g-2 g-2
H H H
g g9 9
T T T
_ g-2 g g+2
(a) (b) (c)
_ g —_— g+2
H H
g ¢]
T T
_ g-2 _ g-2

FIG. 2. Ag= —2 diagrams.

_— 9 ] - — g
H H H
9 ¢] g
T T T
—_— g —_ g-2 —_— g+2
(a) (b) (c)
— g-2 —_— g+2
H H
9 g
T T
(d) (e)

FIG. 3. Ag=0 diagrams.

with  n, /N=1[1x(g+2)/N]. Note also that
Wo(g)+W,(g)+W_,(g)=1, since the W’s partition
probability among the three transition channels available
to a configuration g.

In order for thermodynamic equilibrium, Eq. (1), to be
the stationary state of Eq. (3) (that is, when i — o and
P, . ,=P;) the W’s must satisfy detailed balance. Since in
equilibrium n, W,(g)=n, ., W _,(g +2), where n, is the
number of chains in configuration g and n, ,, the number
in configuration g +2, this requires that the W’s satisfy

W_,(g+2)/W,(g)=[z(g)/z(g +2)]e*, (5)

where z(g)=N!/(n !n_!) is just the number of sign per-
mutations associated with configuration g [similarly for
z(g +2)] and A (=2¢) is the chain’s energy increase (in
units of k7T) in a Ag = +2 transition. Using the W’s from
Egs. (4) we find, in fact, that

W_,/W,=z(g)/z(g +2)
X1+A+(2n, +N—1)[4N—1)]A?
+ e (6)

where n, =(1+g/N). This result shows that only for
A <<1 will the model’s stationary state satisfy thermo-
dynamic equilibrium. Important for this investigation
though, this will be true for any length N; hence the
product Ne may be large without violating detailed
balancing. Since the focus of this investigation is a long
chain with a weak interaction, the simple W’s derived
above will be adequate.

Combining Egs. (4) and (3) and defining a new random
variable k =g /2, whose range is the consecutive integer
values (—N/2,—N/2+1,...,—1,0,1,...,N/2), we can
rewrite Eq. (3) as

P, (k)=(a,+b,k)P;(k)
+la,+by(k—1)+c,y(k —1)2]P;(k —1)
+lay;+by(k +1)+cy(k+1)2)P(k+1), (7

where the coefficients a,, b, a,, b,, etc. depend only on
N and the energy €. Their expressions are given in the
Appendix. To solve Eq. (7) we define a generating func-
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tion F;(s)=3,P;(k)s*. The derivatives of F evaluated at
s =1 give the moments of the probability distribution,
that is, {(k ) =(dF /ds),—, and (d*F /d%),_,{k?) — (k).
The differential-difference equation for F;(s) is

, d’F,;
s —ds—z(czs +c3/s)

dF,
+sT;[b, +(by+ey)s+(by+cy)/s]

+(a;+ays+a;/s)F,=F; .. (8)

Setting s =1 in Eq. (8) and using the coefficient values in
the Appendix, one finds that F;(s=1)=F, ,(s=1)
=3 P;(k)=1, since the P;(k)’s are normalized for all
values of the move index i. The stationary state of Eq. (8)
for € =0 is obtained by setting F;  ;(s)=F;(s)=F(s). One
finds

s dF
2___
N ds

whose solution is F(s)=(1)M1+s5)"/s¥/2. Using the bi-
nomial theorem to expand F(s) and setting g =2k we find
that g’s steady-state probability distribution is binomial,
that is, P(g)=N!/[((N +g)/2)[(N —g)/2)!], and that
(g)=0and {g?)=N, as expected. It is also straightfor-
ward to show from Eq. (8) for e=0 (that g’s mean value
after step i) (g(i))=go[(N —1)/N], or for large N,
(g(i)) =gye ~/¥, which shows that the duration of the
transient phase of the motion depends on the chain
length N. In fact, in Sec. II we show that the temporal
duration of the transient phase of the diffusion is propor-
tional to N2 Steady-state solutions of Eq. (8) for arbi-
trary € can be written in terms of polynomials derived
from hypergeometric series, but we will not discuss those
results here.

+F(1—s)/(1+5)=0, 9)

II. DIFFUSIONAL MOTION

Suppose the discrete probability P;(z) that the chain
make i moves during the time interval (0,¢) is known. If
each move’s length is a and if forward (H) and backward
(T) moves occur with equal frequency, the mean-square
displacement during (0,7) is

(S2)=a’3 iP(t)=a?(i(1)) , (10)

where (i(#)) is the average number of moves during

(0,2). Since the chain’s one-dimensional diffusion con-
stant is just the long time limit of {(S?) /2t, the transient
|
dPi+](k,t,) _
dt’

and steady state of the diffusion are obtained by calculat-
ing (i(#)). To do this consider the discrete joint proba-
bility P;(g,t), which during (0,¢) the chain makes i moves
and is in state g at time f. A recurrence relation for
P;(g,t)is

P,-+1(g,t+At)=Pi+1(g,t)[1—(R0+R2+R_2 )At]
+P;(g,t)RoAt+P,(g —2,t)R, At
+P,(g +2,1)R _,At . (11)

This recurrence relation enumerates all the channels
that lead to configuration g and move i +1 during inter-
val (t,t +At). RyAt is the probability of a Ag =0 move
during (t,t+At) and R,At and R_,At are similarly
defined for Ag=+2 and —2 moves. The first term in
Eq. (11) is the probability that at time ¢ the chain is in
state g and has already made i +1 moves and then makes
no move during (z,¢ +At). The other terms are similarly
defined. Rearranging terms, dividing by At and letting
At—0, we obtain the differential-difference equation

dP; . ,(g,t)
TZ —P,-+1(g,t)(R0 +R2 +R.._2)+P,-(g,t)R0

+P(g—2,0R,+P(g+2,0R_, .  (12)

To calculate the rates R, R,, and R _, we return to the
diagrams in Figs. 1-3 and use an approach based on
first-passage times [16]. To calculate R, for example,
the probability of each Ag =0 process in Fig. 3 should be
multiplied by the inverse mean-first-passage time for the
process diagrammed and then added. For Fig. 3(a), for
example, the mean-first-passage time is just the mean
time between jumps in free diffusion ¢;. This is also the
case for diagram 3(c), but a new first-passage time ¢_,
must be calculated for 3(b). Since the ratio t;/7_, can
only depend on the energy change 2¢ and not on N and
since we are only interested in the case of € <<1 when
t_,=~t; must hold, we will set t_,=t¢,. This approxima-
tion, which simplifies the calculation, can lead to in-
correct numerical factors in calculated results but will
not change their N or € dependence for € << 1. Approxi-
mating the ratio ¢_,/t; by the Boltzmann factor
e = —2¢, for example, does not change the N or & depen-
dence of our results when e<<1. Thus we set
Ro=Wy/ty, Ry=W,,/ty, and R_,=W_,/t;, where
the W’s are defined in Eq. (8). Defining dimensionless
time ¢’ by setting ¢t =¢'t; and also using the random vari-
able k =g /2, which takes consecutive integer values from
—N /2 to N /2, we find that Eq. (12) becomes

=—=P; 1k t")a;+a,+as;+(b;+by+bsy)k +(c, +c3)k?]+P;(k,t')a, +b,k)

+Pi(k —1,t")[a,+by(k —1)+c,(k — 121+ P(k+1,t")a; +by(k+ 1D +cy(k+1)] , (13)

where the coefficients are given in the Appendix. To solve Eq. (13) define the generating function

F(r,s,t")=3 S Pi(k,t')risk,
ik

(14)
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which in addition to F(r =1,s =1,¢')=1 has the following useful properties:

; =3 JiP;(k,t)=(i(t")) ,
ar r=s=1 i k

: =3 3 kPi(k,t")=(k(t')) .
ok r=s=1 i k

From Egs. (13) and (14) the partial differential equation satisfied by F(r,s,t') is

aF

2
szﬁ[cz(rs —1)+es(r/s —1)]+s—[b(r =1)+(by+c,)rs —1)+(bs+c3 Nr/s —1)]

as

(15a)
(15b)

_ OF
+F[al(r—1)+az(rs—1)+a3(r/s—1)]—¥ . (1e)

To obtain {i(¢')) and (k(¢')) from Eq. (16) first we switch to new variables using s =e’ and » =e*. We then replace e®
and e“ by 1+v and 1+ u, respectively, since we are only interested in Eq. (16) in the neighborhood of s =r =1. The re-

sulting equation is

3%F oF

at"? ot’

Then since (i(¢'))=(dF/du),—,—o and (k(z'))
=(0F /v), -, o, We differentiate both sides of Eq. (17),
set v =u =0, and obtain the following coupled equations:

aéi{, =(a,—a;)+{k)by—by+c,—c3)
d*F
+(cy,—c3) FYs) . (18a)
ai) _
o =(a,+a,+a;)+ k)b, +b,+bs+c,+c3)
9*F
+(c,+c3) | - (18b)
ar’? |,

For £€=0, evaluation of the coefficients given in the Ap-
pendix shows that Egs. (18) reduce to

k) _

3 (k)/N, (19a)
ai)
3 =1 (19b)

The solution of Eq. (19a) is the temporal equivalent of
(g)=gye'/N discussed Sec. I and from Eq. (19b)
(i(t)) =t /t,, the expected free-diffusion result.

Because k’s probability distribution is binomial for
£€=0, (3’°F/3t'*);=(k?)~N /4 in Egs. (18) for e<<1.
Expanding the numerical coefficients about e=0 shows
that the final term in Eq. (18a) must be of order £2/N and
the final term in Eq. (18b) of order ¢/N. Therefore we
neglect these terms. To first order in & then, Eq. (18a)
gives

[(62—03)1) +(CZ+C3 )u]+_[(b1 +b2+b3 +C2 +C3)u +(b2—b3 +C2_C3)U]

+F[(al+az+a3)u +(a2_a3)v]:_a?% . (17)

(k())=koe "“N—3Ne(1—e "4N), (20)

which predicts that the steady-state value of (k) for
small € is —3Ne, instead of the exact value of 1 Ne [see
Eq. (2)]. This erroneous numerical factor is the result of
approximation all mean-first-passage times by ¢;. More
importantly, however, the dependence of (k )’s steady-
state value on N and ¢ is correct. Note also that (k(¢))’s
characteristic time ¢, N is proportional to N2, since ¢, is
proportional to the chain’s friction coefficient, which is
proportional to N. Returning to Eq. (18b) we find that

%:(1—8/4)+(k(t'))8/2N. 1)

Using Eq. (20) we calculate to lowest power in € that

() /t=(1—¢e/4)/t,
+leko/CN)(1—e "Ny st /N . 22)

The first term in Eq. (22) shows that the diffusion con-
stant is altered from its free-diffusion value by the chain-
matrix interaction, but the inverse N dependence, from
t;, is the same as for simple reptation. The size of the
diffusional transient in Eq. (22) depends on the initial
value k, /N, which may be positive, negative, or zero. In
general, the transient starts from an initial value of
eky/(2N) and then decreases towards zero, inversely
with time for long times, with a characteristic time pro-
portional to N2.

III. DISCUSSION AND CONCLUSION

The principal conclusion of our study is that a weak
chain-matrix interaction does not alter the inverse-length
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dependence of the chain’s diffusion constant predicted by
reptation, even for very long chains. While the specifics
of the molecular mechanism behind the interaction have
not been specified, our formulation would seem to apply
to either weak elastic bonding of chain segments or van
der Waals—like interactions between chain and matrix.
It is less certain that our conclusion applies to the ran-
dom entropic forces encountered by the diffusing chain
[15-17], since a realistic model of these effects must also
include significant fluctuations in the reptation tube
length, which we have neglected [20]. An approximate
way of including such length fluctuations in our discrete
reptation model has been proposed [21], and their effect
on diffusion will be considered in a future investigation.
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APPENDIX

a;=1/4[14+1/(1+e®+1/(1+e %),
by=1/Q2N)[1/(1+e*)—1/(1+e~2%)],
a,=1/(AN){(N —2)/[4N —1)]+e % /(e %+1)
+e /(e E+e®)N/(N—1)},
b,=—1/(4N)[1+2¢ % /(e 2¢+1)],
c;=1/[4N(N —1)][1—2e "% /(e "2 +e2)],
a;=1/(4N){(N —2)/[4(N —1)]+e*/(e®*+1)
+e*/(e*+e E)N/(N—1)},
by=1/(4N)[1+2e*/(e*+1)],
c3=1/[4N(N —1)][1—2e% /(e*+e %] .

In the above expressions N is any positive even value.
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